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Abstract. An improved ab initio calculation has been performed for the potential for the LiH a 3Σ+ state,
using two very large basis sets. The Basis Set Superposition Error (BSSE) correction has been determined
for both basis sets and the non-Born-Oppenheimer correction estimated to be negligible. The best potential
is approximately 10% deeper than the previous estimate. Vibrational energies and scattering lengths have
been calculated for 6,7LiH(D) with both potentials, with and without the BSSE correction, and also with
an estimated potential expected to bracket the true potential. The 7LiH scattering length is estimated
to be (45 ± 4)a0 and hence the low-energy cross-section in the best a 3Σ+ potential is about half that
calculated previously. Enhanced cooling by 7Li of trapped H atoms remains feasible.

PACS. 34.20.Cf Interatomic potentials and forces – 34.50.-s Scattering of atoms and molecules

1 Introduction

In order to assist the achievement of Bose-Einstein con-
densation of atomic hydrogen it has been proposed re-
cently to use enhanced cooling by a cloud of ultracold
lithium atoms [1]. Magnetically trapped hydrogen and
lithium atoms are predominantly in low-field seeker pure
stretched-spin states and hence the Li–H collisions take
place in the lowest triplet state of the lithium hydride
molecule, that denoted a 3Σ+. Because of the ultralow
temperatures of relevance for Bose-Einstein condensation
in hydrogen, ≈ 50 µK [2], the efficiency of this cooling
process depends crucially on the scattering length in the
a 3Σ+ state of LiH. This quantity has been calculated by
Côté et al. [1] to be much larger than the corresponding
value for H–H scattering, thus allowing for an enhanced
cooling. However, the well of the LiH a 3Σ+ state arises
mainly from the dispersion interaction and hence is very
shallow (about 4 cm−1). Indeed all the earlier calculations
for this state [3] found it to be purely repulsive. As the well
supports just one vibrational state for 7LiH with a bind-
ing energy 0.3% of the well depth, the scattering length is
very sensitive to the potential.

A challenging accuracy, on the borderline of the best
current ab initio calculations, is thus necessary here. In ad-
dition, small effects such as Basis Set Superposition Error
(BSSE) and non-Born-Oppenheimer corrections, which
can be important when the potential curve is required with
an accuracy of well below a wavenumber, were not con-
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sidered in the previous estimate [1]. Moreover, the 1.45%
corrections to the ab initio curve employed in reference [1]
rely on a comparison with the experimentally derived IPA
(Inverted Perturbation Approach) values [3] for the X1Σ+

potential calculated similarly. This potential, however is
strongly affected by the ionic state (Li+ + H−): for exam-
ple the calculated dissociation energy depends crucially
on the H electron affinity [4] yielded by the basis set em-
ployed, while the triplet state is unaffected by the ionic
state. Hence different physical effects govern the two po-
tentials and the extrapolation of the correction from the
singlet around its equilibrium geometry to the triplet at
large internuclear distance is not well founded.

In this paper, an improved estimate of the scattering
length and hence of the cooling efficiency is performed us-
ing a more accurate ab initio potential. In the next section
the new ab initio calculations are presented, followed by
a discussion of the corrections to this Born-Oppenheimer
evaluation. The binding energy and scattering-length re-
sults follow and we end with a discussion and conclusions.

2 Born-Oppenheimer calculations

Two basis sets have been used in the present ab initio
calculation of the LiH a 3Σ+ state. The MOLPRO pack-
age [5] has been employed and only all-electron calcula-
tions have been performed. The first basis set corresponds
to that used [6] for the previous estimate [1], although
since we have detected an error in the first contraction co-
efficient of the H basis set given in Table 1 of reference [6],
we have used these exponents without contraction for H.
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Table 1. Atomic energies for H,H−,Li,Li+ and Li− using the HB and YD basis sets described in the text, with various levels
of calculations: HF corresponds to Hartree Fock, fci to full CI and ccsd(t) to coupled cluster approaches.

HB (Eh) error (cm−1) YD (Eh) error (cm−1) exact (Eh)

H (1s) −0.49999603 0.9 −0.49970822 64.0 −0.5

H (2s) −0.12499270 1.2 −0.12465223 76.3 −0.125

H− fci −0.52764511 15.6 −0.52677260 207.1 −0.527716a

Li (2s) HF −7.43270542 14.0 −7.43257147 44.0 −7.43277b

Li (2s) ccsd(t) −7.47752019 121.0 −7.47295981 1122.0 −7.47807b

Li (2s) fci −7.47296479 1120.0 −7.47807b

Li (2p) ccsd(t) −7.40960436 122.0 −7.41016b

Li+ fci −7.27940143 116.0 −7.27500357 1081.0 −7.27993c

Li− ccsd(t) −7.50016010 136.0 −7.49556302 1145.0 −7.50078d

aUsing the recommended H electron affinity [7], bReference [8], cusing (b) for the Li energy and the experimental IP
43 487 cm−1 [9], dusing (b) for the Li energy and the recommended Li EA = 0.6180 eV [7].

We have also checked that using correct contraction coef-
ficients or no contraction leads to almost identical results
both for the H atom and for the molecule. This basis set
will be labelled YD hereafter. It contains 12s (the first
contracted on 4s primitives), 10p, 6d and 3f functions for
Li and 6s, 4p and 2d uncontracted functions for H. This
can be considered as a large basis set expected to yield
results of spectroscopic accuracy.

To go beyond the YD basis we have considerably ex-
tended the basis set for Li and used a huge one for H.
This new basis set contains only uncontracted Gaussian
functions: 24s, 17p, 13d, 6f and 2g for Li, along with 20s,
11p, 7d, 4f and 2g for H. It will be labelled HB hereafter.
The calculated energies for the various atomic species are
reported in Table 1, together with the exact results in the
sense of a complete basis set. It is noteworthy that the dif-
ferences from the exact values have decreased by at least
a factor of ten on replacing the YD basis by the HB basis.

With the YD basis set we could perform a full CI calcu-
lation for Li and compare it to the coupled cluster ccsd(t)
approach [10] that we will adopt for the molecule. These
two energies differ by only 1.1 cm−1, showing that the
core-valence correlation energy is almost completely taken
into account by the ccsd(t) approach within the basis set
limitation. It can also be noticed that the alternative CI
approach adopted in reference [6] remains 59 cm−1 above
the full CI result, although the authors considered it as
a full CI-quality calculation. The errors for the energy
spacings in Li and its ions have also been significantly re-
duced: 1, 5 and 14 cm−1 for the 2s–2p transition energy,
the ionisation potential and the electron affinity, respec-
tively, compared to 23, 41 and 24 cm−1, respectively using
the YD basis. For H, the electron-affinity error, calculated
at the full CI level, decreases from 143.1 cm−1 using YD
to 14.8 cm−1 using HB.

For the molecule, we have performed ab initio calcula-
tions at the ccsd(t) level for these two basis sets in order to
see the evolution of the scattering length when improving
the basis set. The ccsd(t) approach presents the impor-
tant advantage of being size consistent, a quality required
here because of the tiny well. Moreover, since the lowest

triplet state admits a single determinantal configuration
even at dissociation, the damped divergence which may
arise when the bond breaks [11] is totally absent here at
all distances. We have checked that the ccsd(t) molecu-
lar energy matches at large distance (1 000a0) the ccsd(t)
separated-atom limit within less than 10−10 Hartree.

The potential curves, V (R) at internuclear sepa-
ration R are illustrated in Figure 1 for separations
10a0 ≤ R ≤ 25a0. For separations beyond 20a0 the po-
tential is well described by the long-range approximation,
discussed below. The better estimate of the potential (that
using HB) leads to a deeper well than with YD. Because,
as discussed above, we have improved the calculation of
the correlation energy, the present potential using YD is
also slightly deeper (≈ 0.05×10−5Eh) than that employed
previously [1]. Thus, the main effect of improving the ba-
sis set and the level for the treatment of the correlation
energy has been to deepen the well and to shift the re-
pulsive wall. More deeply bound vibrational levels can be
expected and thus a decrease in the scattering length can
be anticipated since the current estimate, 65a0, is well in
excess of the characteristic value, approximately 10a0, for
this interaction [1,12]. A decrease in the scattering length
from deeper potentials is also expected following the anal-
ysis of Jamieson and Dalgarno [13].

To attempt to estimate the possible uncertainty in our
HB result we have introduced a third potential, denoted
LB, which at each separation lies as far below the HB
result as that does below the YD value. This potential
is also shown in Figure 1. For this estimate the corrected
potentials, including allowance for BSSE (see below), have
been used since no BSSE is expected for a complete basis
set.

3 Corrections

Exploiting the size consistency of the ccsd(t) approach,
we could perform accurate and confident estimates of Ba-
sis Set Superposition Errors (BSSE), computing for both
basis sets at varying distances the energy of each atom
in the presence of the companion atomic basis set. In the
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Fig. 1. Ab initio Born-Oppenheimer
potential energy curve for the a 3Σ
state of LiH computed at the ccsd(t)
level using the HB and YD basis sets.
Also shown are the extrapolated po-
tential denoted LB and that employed
by Côté et al. [1]. The inset shows the
BSSE error on both atoms with both
basis sets.

range of interest here, BSSE is quite small (≈ 0.06 cm−1)
for both basis sets, remaining larger for H than for Li,
notwithstanding the atomic errors being in the reverse or-
der. However, at short distances the error increases, see
Figure 1. Improving significantly the basis set decreases
BSSE only for Li, quite surprisingly, although this high-
lights the different deficiencies in the two atomic basis
sets. For Li mainly functions helping estimate the corre-
lation energy are missing and the H basis set gives only
marginal improvements to that, although the addition of
high angular momentum functions does bring a small but
systematic improvement for R & 5a0. For H it is the in-
ability of Gaussian functions to reproduce the slater func-
tion and the cusp at origin which dominates the error and,
curiously, with the huge basis set on H there can be more
BSSE than with the smaller one, probably because of the
added diffuse functions on Li.

For our current application, BSSE remains a minor
effect: at R = 11.5a0, for example, it amounts only to
0.063 cm−1 with HB and to 0.064 cm−1 with YD. As
is clear from Figure 1, BSSE increases as R decreases,
presenting weak undulations which are probably related
to the various nodal patterns in the basis sets. Although
the influence of BSSE on the shape of the potential is
quite limited here, effects of comparable magnitude (about
1.4%) were discussed previously [1] and shown to lead
to differences of about 7.5% for the triplet scattering
length [1].

For large values of R we follow Côté et al. [1] in using
the dispersion interaction

Vdisp(R) = −C6

R6
− C8

R8
− C10

R10
· (1)

We have employed the C6 value from Côté et al.
(66.544 a.u.) and the value of C8 (3 003 a.u.) from Bussery
et al. [14]. Their value for C10 is 148 509 a.u. Using these
values, where the exchange interaction can be neglected,
the changes from the results for Vdisp(R) obtained by
Côté et al. with a 10% different value for C8 and ignor-
ing C10 are negligible. From Figure 2 it can also be seen
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Fig. 2. Differences ∆V between the ab initio results and the
long-range dispersion interaction, equation (1). The dispersion
interaction is also plotted to indicate the magnitudes involved.

that taking BSSE into account improves significantly the
agreement with Vdisp(R). In the calculations of scattering
lengths and binding energies described below we have em-
ployed the ab initio points for R ≤ 20a0. We have then
used V (20) to determine an effective value of C10 to give a
continuous fit to the dispersion interaction and employed
equation (1) with this effective C10 for larger R values.
The values of C10 for the potentials corrected for BSSE
were typically twice the values from [14], while for the po-
tentials without correction the C10 values were typically
ten times larger.

Since non-Born-Oppenheimer interactions will also in-
fluence the interatomic potential we have estimated their
effect. It has been shown recently [15] that for the ground
state of LiH (X1Σ+), which presents a broad avoided
crossing between the ionic (Li+H−) and the neutral
(Li(2s)H(1s)) configurations, the intrastate adiabatic cor-
rection dominates over the effect of the interstate non-
adiabatic couplings. For the a state there is no avoided
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Table 2. Binding energy, E0 (cm−1) and scattering length, a (a0) for isotopomers of LiH using the various potentials. For YD
and HB the results in parentheses are those obtained when ignoring BSSE.

7LiH 6LiH 7LiD 6LiD

Côté et al. [1] E0 0.0146 0.0102 0.342 0.312

a 65+5
−5 71+6

−5 22+1
−1 23+1

−1

YD E0 0.0310 (0.0435) 0.0251 (0.0365) 0.379 (0.413) 0.348 (0.382)

a 61.1 (53.7) 66.9 (57.8) 22.0 (21.5) 22.9 (22.3)

HB E0 0.0541 (0.0687) 0.0461 (0.0597) 0.463 (0.498) 0.429 (0.463)

a 49.3 (45.2) 52.7 (47.9) 20.7 (20.3) 21.4 (21.0)

LB E0 0.0858 0.0754 0.562 0.524

a 41.2 43.3 19.4 20.0

crossing and the nearest 3Σ+ electronic state lies quite
high in energy, thus the preponderance of the adiabatic
correction should be even greater. For a diatomic molecule
the virial theorem allows for an easy estimate of that part
of the adiabatic correction involving ∂2/∂R2 which mod-
ifies the electronic kinetic energy. This correction can be
written as [16]

∆E = − 1
2(MA +MB)

(
E +R

dE
dR

)
, (2)

MA and MB being the atomic masses, in units of the
electron mass. In principle E should be the electronic en-
ergy only, discarding the nuclear repulsion, but since for a
Coulombic potential the two terms cancel, E can be taken
as the usual total energy. For the X1Σ+ ground state of
LiH, the total adiabatic correction has been computed [17]
and it has been verified that this virial-based contribu-
tion gives about 60% of the whole [18], allowing thus for
reasonable estimates. Although the value of ∆E appears
relatively large (about 60 cm−1), its variation with R in
the range of interest here is extremely small, only about
5 × 10−4 cm−1. This correction has thus been discarded
in comparison to BSSE.

Tabulated values of the HB and YD potentials, with
and without the BSSE correction, can be obtained from
the authors.

4 Dynamics calculations

The behaviour of the scattering length, a, is closely re-
lated to the binding energy of the highest vibrational level
in the same potential. Hence we start by determining the
binding energies, E0 of the vibrational levels of the five
potentials described above for the four isotopomers 7LiH,
7LiD, 6LiH and 6LiD. The LEVEL code of LeRoy [19]
has been employed, with the extrapolation of the poten-
tials to large values of R described above. For extrapo-
lation to smaller values of R than 1.8a0, the smallest R
value for which ab initio points were calculated, the pro-
cedures in LEVEL were employed. Our results for the ro-
tationless v = 0 state are compared in Table 2 with those
obtained by Côté et al. [1]. The larger binding energies
obtained here are consistent with the slightly deeper po-
tentials discussed above. The binding energies of the very

weakly bound 6LiH and 7LiH states are particularly sen-
sitive to small changes in the potential, recalling that the
vibrational level of Côté et al. [1] for 6LiH was bound by
≈ 0.3% of the dissociation energy. The LiD potentials are
sufficiently strongly bound to support one rotationally ex-
cited level, thus opening up in principle the possibility of
observing a purely rotational transition at 9.19 GHz for
7LiD.

The scattering length has been determined by fitting
to the standard result in terms of the scattering length and
effective range, re at collision energies in the nanoHartree
region. We also checked our phase shifts δ using the iden-
tity

tan δ =
2µ
~2k

∫ ∞
0

sin(kR)V (R) y(R) dR (3)

where µ denotes the reduced mass, k the wavenumber and
y the regular solution of the radial Schrödinger equation
with normalization

LimR→∞y(R) = sin(kR) + tan δ cos(kR).

Results for a obtained from the asymptotic form directly
and using equation (3) typically agreed to at least five
significant figures. Our results are compared with those of
Côté et al. [1] in Table 2. Plotting the behaviour of the
integral appearing in equation (3) as the upper limit is
increased it is clear that there is considerable cancellation
between contributions from the repulsive and attractive
parts of the potential. The larger binding energies with
the potentials considered here are reflected in the smaller
scattering lengths, resulting for 7LiH in the limiting low-
energy cross-section σ ≈ 30 000a2

0, just over half that ob-
tained previously [1]. However this still yields a rate coeffi-
cient about 550 times larger than the corresponding value
for triplet H + H scattering [1].

Semiclassical approximation

While semiclassical methods are expected to be less re-
liable for systems supporting just one vibrational level,
nevertheless it is of interest to assess the accuracy of
such methods in a very unfavourable case. It has been
shown [12,20] that for a potential falling off as R−6 the
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semiclassical approximations to the scattering length, aSC

and the effective range, rSC
e are given by:

aSC = ā[1− tan(Φ− π/8)] (4)

where

ā =
√

2γΓ (3/4)/Γ (1/4)

Φ =
1
~

∫ ∞
R0

√
−2µV (R) dR, γ =

√
2µC6/~

µ being the reduced mass, V (R0) = 0 and

rSC
e =

ā

3

[
Γ (1/4)
Γ (3/4)

]2 [
1− 2

ā

aSC
+ 2

( ā

aSC

)2
]
. (5)

For 7LiH ā = 10.28a0 and, taking the case of the HB po-
tential, without correction for BSSE, Φ = 0.6926π, yield-
ing aSC = 57.9a0, differing by 17% from the numerical
result 49.3a0. The corresponding value for rSC

e is 21.2a0,
or 20.1a0 using the numerical value of a in equation (5),
differing by 6% and 1% respectively from the numerical
value of 19.95a0. Considering the sensitivity of aSC to Φ
for the values arising here, the success of the semiclassical
estimate is certainly encouraging. We note that the value
of Φ in equation (4) consistent with the numerical value
of a is 0.7070π, differing by just 2% from the semiclassical
value.

In principle a semiclassical estimate can also be em-
ployed for the near-dissociation bound levels. However
the corresponding quantization condition for a potential
falling off as R−6 [21] is:

Φ′(ε) = (v + 1/2 + φ)π

where Φ′(ε) is the phase integral at energy ε, analogous
to the zero-energy Φ above. Here φ is zero well below dis-
sociation and 1/8 at dissociation, leading to considerable
uncertainty in this case.

5 Conclusions

Enlarging considerably the LiH basis set from that em-
ployed previously [1] has led to a deepening of the well
and to a reduction in the scattering lengths, a for H + Li
scattering with parallel spins and consequently in the cool-
ing efficiency. Any additional improvement to the basis set
is expected to reduce further the value of a. As the result-
ing changes in the potential are believed to be unlikely
to exceed the change to the LB potential, the calculated
result for a (HB) can be considered as an upper bound
with the LB result as a lower bound. Our recommended
scattering length values are then: 45 ± 4, 48 ± 5, 20 ± 1
and 21 ± 1 for 7LiH, 6LiH, 7LiD and 6LiD, respectively.
Semiclassical estimates show the scattering length to be
within 20% of the numerical value and the effective range
within 6%. Although the LiH scattering lengths are sub-
stantially smaller than the previous estimate, their large
magnitude compared to that for H–H collisions still pre-
dicts an efficiency about 500 times larger for hydrogen

cooling by lithium atoms than by hydrogen atoms. The
main conclusion that lithium seeding can assist achieve-
ment of Bose-Einstein condensation for hydrogen remains.
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